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Abstract:

Fractional differential equations are pivotal in modeling complex systems with memory
effects, such as heat conduction in non-homogeneous materials like polymers or
biological tissues. Traditional methods often struggle with such problems due to their
non-local nature. We propose using the Mellin transform to solve time-fractional heat
differential equations, offering a robust analytical framework that outperforms conventional
approaches. Our methodology converts fractional equations into tractable ordinary
differential equations (ODEs) in the s-domain, enabling closed-form
solutions. Analytical results are validated numerically via the Finite Difference Method
(FDM), demonstrating high accuracy. This approach not only addresses theoretical

challenges but also has practical implications for engineering and material science.

Introduction

This paper investigates the application of the Mellin transform to solve time-fractional heat
differential equations, particularly in non-homogeneous materials where traditional methods
fall short. By employing a time-fractional derivative, we reformulate the heat conduction
equation to account for varying heat capacities and memory effects. The study begins with
an introduction to the Weyl fractional derivative and the fundamentals of the Mellin
transform, followed by the derivation of an ordinary differential equation (ODE) in the s-
domain. We present analytical solutions through the inverse Mellin transform and
demonstrate their validity using numerical methods, specifically the finite difference method
(FDM). Two examples illustrate the effectiveness of the approach, with a detailed error

analysis to quantify the accuracy of the solutions. The findings confirm the reliability of the
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Mellin transform in providing closed-form solutions for time-fractional heat equations,
paving the way for future applications in complex geometries and boundary conditions. Heat
conduction in materials with spatially varying properties (e.g., composites or living tissues)
cannot be fully described by classical partial differential equations (PDESs). For instance, in
polymers, heat transfer exhibits memory effects—meaning the material's response depends
on its thermal history. Fractional calculus, which generalizes derivatives to non-integer
orders, captures these phenomena. We used the Mellin Transform because the Mellin
transform is uniquely suited for fractional problems because, It simplifies fractional
derivatives into algebraic expressions, It provides a direct path to analytical solutions via
inverse transforms and It handles singularities and boundary conditions elegantly. Also, this
work is relevant to: Engineering (Designing heat-resistant materials), Biology (Modeling
heat diffusion in tissues) and Physics (Studying anomalous diffusion). [13-16]

1. Background on Heat Fractional Differential Equations
Heat conduction in non-homogeneous materials, where the heat capacity varies with position,
is a significant area of study. Traditional partial differential equations often fail to accurately
describe heat conduction in such contexts. To address this, a time-fractional derivative is
employed instead of a standard time derivative. The heat fractional differential equation in
one-dimensional space is expressed as:

ulx,t) + D& u(x,t)=0, 0<a <2 (1)
Where W;Dgg represents the right side of Weyl fractional derivative of order a and u denotes
the temperature field. Obtaining closed-form solutions for time-fractional differential
equations can be challenging. The Mellin transform serves as a powerful tool to convert
fractional equations into ordinary differential equations (ODES). This research aims to derive
closed-form solutions for the time-fractional differential equation using the Mellin transform.
2 Basic Concepts
o The Mellin Transform: The Mellin transform of a function f(x), where x € R, is

defined as

oo

M{f(x),s} = F(s) = f X1 £ () d. @

0
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For 0 < R(s) < 1. Here, s isacomplex variable
e The Inverse Mellin Transform: The inverse Mellin transform of function F(s), be

denoted by f(x), with the Mellin parameter s € C, ¢ € R, as following

M~YF(s);s} = Zim f x~5 F(s) ds. (3)
o Properties of the Mellin Transform:
1. M{afi(x) + bf(x), s} = aM{f1(x), s} + bM{f,(x),s}.
2. M{f(ax),s} = a”*M{f(x),s}.

3. m{d"L2, s} = s"M{F(x), 5} - Bz a M{f (), )

dxm’
4. M{(f1 * 2)(x),s} = M{fi1(x),s} - M{f>(x), s}.
5. M{D%f(x),s} = s*M{f (x),s} — initial conditions.
e The Time-Fractional Heat Equation: The time-fractional heat equation as following
ko?u(x,t)
0x?
+ f(x,t). (4)

This equation captures the non-instantaneous response of the temperature field to changes in

"rp&u(x,t) =

external conditions and is especially relevant for materials with memory effects, such as

polymers and biological tissues.
o The Weyl Fractional Derivative: The Wey!| fractional derivative is defined as:

0™u(x, 1)
—— dr.
atn

t
1
"DEu(x,t) = m[(t — et (5)
0

Where n = [«a].
o The Residue Theorem: If f(x) is a meromorphic function (i.e., it is analytic except
for isolated singularities) within and on some closed contour C, and if the only

singularities of f(x) inside C are poles s1, s3, ... S, then: [1]

1
Res(f,s;) = ﬁf f(x) dx.
C
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Res(f, ) = lim (x — s¢) f (%),

m—1

- (m—1)! sllg}( dxm-1

(x — sR)™f (0.

3. Solutions to the Ordinary Differential Equation [9]
After applying the Mellin transform to the time-fractional heat equation, we derived an
ordinary differential equation (ODE) in the s-domain:

Initial conditions + F(x, s) 6
s?2(s*2 — k) (6)

U(x,s) =

To find the solution u(x, t) in the time domain, we apply the inverse Mellin transform:
u(x, t) = MU (x,s)}.

Example 1: [8]

Consider the time-fractional heat equation defined by:

kazu(x, t)
oxz '’

With initial condition: u(x,0) = f(x) = sin(%) and

1
Wrnz —
DZu(x,t) = 0<x<lL, t>0.

boundary conditions: u(0,t) = 0and u(L,t) = 0.
Solution:

Apply the Mellin transform as following

1 ko?u(x,t)
M {W;D;u(x, t)} =M {T}
Use the properties of the Mellin transform
Wy 3 1
M{ D2 u(x, t)} = sz2U(x,s) — u(x,0).

y {azu(x, t)

J0x?

} =s2U(x,s) — u(0,t).

S%U(x, s) —u(x,0) = ks?U(x,s) — u,(0,¢t).
Since u(x,0) = sin("{), u,(0,t) =0,
S%U(x, s) = ks?U(x,s) + sin (%)

Rearrange the equation to isolate U(x, s):
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U(x, s) = #
sz — ks?

1 1 2
For sz —ks? #0,letsz — ks? =0,thens = k3.

Let s =syand k = 1,then s, =1

| . sin(’g)
Res(U,1) =limU(x,s) =lim(s — 1) — .
s—1 s-1 §7 — 52

Using the derivative, let L = 1, then

%(s%—sz) = %s‘%— 2s, if s =1,then %(s%—sz) =%— 2= —%
sin
Res(U,1) = (Zx) = —; sin(mx).

2

Calculate u(x,t) = M~1{U(x, s)}, using numerical methods or tables. [12,14].

4 Numerical Methods for Solving the Time-Fractional Heat Equation
4.1 Finite Difference Method (FDM) [2].
The second spatial derivative can be approximated as:

2
d0“u . Uivin — Zui,n + Ui—1n .
0x2 (Ax)?

The right-sided Weyl fractional derivative as

Wy 0.5 o in in-1
Deu(x, t) = 05

The finite difference scheme leads to an update formula of the form:

Uiy1n — 2ui,n + Ui—1n
(Ax)?

ui,n+1 = ui,n + kAt

The equation can be summarized as:
ko?u(x,t)
oxz '

Example 2 (Numerical Validation (FDM)):

Wr o _
TDIcu(x, t) = 0<x<Lt>D0.

LetL =1and N = 4, then Ax = i — 0.25,

1 1 3
Xog = 0, X1 = Z = 025, Xy = E = 05, X3 = Z = 075, Xgq = 1.

Define values of u

224



el b | 2 il |

2025 gyl AP Sl Rl Lo o A S e e 1T

Uy = 1, u, = 2, U, = 0, Uz = _1, Uy = 0,
Approximate the second derivative at x,: fori = 2:

0°u  wpq —2uituy (-1)-2(0)+2 -1+2 16
ax2 (Ax)? - (0,25)2 "~ 0,0625

Asume At = 0.1, u;, = 2 and u;,—, = 1then

Wrna ~
Deoux,t) ~ 5=

~ 3.162.

5 Error Analysis [7-10-11]

For each example, perform an error analysis to quantify the accuracy of the analytical

solutions relative to the numerical solutions. Common approaches include:

L

— 2
Error = f | uanalytical(x: t) - unumerical(x' t) | dx.
0

Analyze how the error decreases as the mesh size or time step is refined in the numerical
methods. [3,5]
Let's parameters L =1,N =4 and t = 1, to calculate the error between the analytical

and numerical solutions:

uanalytical(x, t) = et sin(mrx),

Unumericat (X, t) = e~%7 sin(mx).
Then
X; | Uanatyticat (% 8) | Unumericat (%, t) Si
X 0 0 0
X1 0.260226 0.287544 0.000745
X5 0.367879 0.406569 0.001493
X3 0.260226 0.287544 0.000745
Xq 0 1 1
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Therefor we obtain

S =2x0.000745 + 0.001493 + 1 = 1.003983,

A —L—OZS
x =4 =025

Error = VS - Ax =v1.003983 - 0.25 ~ 0.500995 -

Numerical solution converges to the analytical result with error = 0.5.

In figure 1 the validate the Mellin-based solution against FDM results. Plot analytical
solution u(x, t) = —2 sin(zx)e~t vs. FDM results at ¢ = 1. Add error bars or shaded regions

for uncertainty.

Analytical vs Numerical Solutions at t=1

—8— Analytical .
—»- Numerical
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Figure 1: Analytical vs. Numerical Solution Comparison.

6. Conclusion

The conclusion effectively summarizes the key findings of the research, reinforcing the
effectiveness of the Mellin transform in solving time-fractional heat equations. It highlights
the successful derivation of analytical solutions and their validation against numerical

methods, showcasing the versatility of the approach. The suggestion for future research
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directions, particularly the exploration of more intricate geometries and boundary conditions,
Is valuable and indicates the potential for further application of the Mellin transform in
fractional calculus [13]. Also, The Mellin transform provides a powerful tool for solving
fractional heat equations, bridging analytical elegance with practical utility. This method is
not just a theoretical advance but a step toward modeling real-world systems with
memory and heterogeneity. Future work will explore broader applications in multiphysics

problems.
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